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SPONTANEOUS FORMATION OF WAVE TRAINS IN

CHANNELS WITH A VERY STEEP SLOPE ’

Synthesis of Theoretical Researches and
Interpretation of Experimental Results

by

Carlo Montuori

SmoEsis

Numerous observations relative to the pres-
ence of wave trains in channels with a very steep
slope, made recently in Russia, mark the begin-
ning of a number of studies pertaining to this phe-
nomenon, carried out thus far either in the theo-
retical or in the experimental field.

In the discussion of the experimental results,
the results of the theories are being used for re-
vealing the existence of two parameters that con-
trol the appearance and significance of wave trains.

1. GENERAL OBSERVATIONS

Flows in channels with a very steep slope are known to present
peculiar phenomena that give them an aspect which greatly differs from
that of slow or rapid flows in channels with a mild slope: we refer here

to the phenomenon of spontaneous aeration (‘‘rapid’’ flows) and to that

% Research carried out under the auspices of ANIDEL at the Istituto
d'Idraulica e Costruzioni Idrauliche dell’ Universita di Napoli.
“* In the preparation of this paper I availed myself of the bibliographic
material gathered and rearranged in collaboration with Engineer
Mario Gramignani with whom we planned to prepare a summary of
the research work carried out heretofore with respect to wave trains.
Among other things, Engineer Gramignani contributed to the prepara-
tion of the material contained in the paragraph describing the experi-
mental investigations but, above all, being familiar with the Rus sian
language, he was in a position to interpret the Russian papers pub-
lished in this field.
I want to express my appreciation to my colleague Gramignani for
being kind enough to place his contribution at my disposal and regret
that he was unable to continue his collaboration due to unforeseen
circumstances.



of the formation, for no apparent reasons, of intumescences which,
because of their characteristic aspect, will be called ‘‘treni d’onde"’
(wave trains).

In Naples, about ten years ago, Professor M. Viparelli embarked on
an experimental and theoretical study of the aeration phenomenon: this
study has recently been completed. He succeeded in fathoming the
mechanism of spontaneous aeration of ‘‘rapid’’ flows, and we are now in
a position to know the distribution of the total discharge between vari-
ous points of a reach in a steady flow [1].

The second of the above-mentioned phenomena forms the object of
the present study, namely, the formation of wave trains (treni d’onde),
known in the English literature as ‘‘roll-waves.’''*

They usually became apparent at some distance from the inlet as
more or less foaming intumescences which subsequently occur at rather
regular intervals and give the flow profile the typical appearance of the
teeth of a saw (fig. 1).

If we follow the profile of a tooth in upstream direction (fig. 2), we
first encounter the intumescence and subsequently a concave section
where the flow may be without foam. This section tends to run parallel
to the channel bottom and is in turn followed by another intumescence.
In some instances the water depth behind a wave is very small, thus
making it appear as if the flow were almost completely arrested.

As mentioned above, the waves succeed each other at fairly regular
intervals; however, celerity and height differ from one intumescence to
another, so that occasionally one of them may overtake the one ahead of
it and absorb it, whereupon they will continue on their way as a single
wave. However, the succession of the waves appears to become more
regular as the latter move downstreamward.

The formation of wave trains is neither incompatible with the aera-
tion of the flow nor is it subject to the latter’s presence, since these
waves have been found to occur in both aerated and nonaerated flows.

An increase in the discharge usually causes the phenomenon to

Translator’'s note: The American term for ‘‘treni d’onde’’ is ‘‘wave
trains,’’ which is the literal translation of the Italian term.
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subside until it disappears completely. For this reason the presence of
wave trains rarely causes the water to flow over the sides of a chute
since, even though the maximum depth attained by the intumescences is
greater than the depth of the steady flow at the maximum discharge for
which the structure was made, these wave trains can, on the whole,

(1)

easily be contained within the channel which is always relatively large
in proportion to the small water depths.

On the other hand, difficulties may arise for the structures down-
stream from the chute, particularly for the energy dissipator and for the
mildly sloping reach immediately behind the latter. It actually may
happen that a dissipator will operate satisfactorily for the maximum dis -
charge, but that it is incapable of handling the superabundant energy of
the pulsating flow upstream, either permitting the undulatory motion to
be propagated into the slowly flowing water downstream or the water to
leave the channel each time an intumescence reaches the toe of the chute
(figs. 3 and 4).

The potential formation of wave trains has been known for more than
half a century (G. Maw [2] 1884). To my knowledge, however, the ex-
perimental determinations were limited to a few observations made in
channels of existing installations where, among other things, the dis-
charges could hardly ever be measured, which was probably caused by
the fact that most of the channels with a very steep slope operate only on
rare occasions and then for very brief periods.

In Russia [3], the extensive use of steeply sloping channels, either
for spillways or for irrigation systems, recently prompted the engineers
of that country to seek criteria that would render it possible to design
these channels in such a manner that the undulatory movement in ques-
tion would not develop in them. This led to an extensive series of obser-
vations on existing structures.

On the other hand, through the study of variable motion in gradually

(1) Only recently [1] the knowledge of the aeration mechanism of a very
rapid flow has made it possible to determine the depth of an aerated
flow: for this reason the channels were heretofore always over-
designed.



varying flows, made by some authors using an entirely different ap-
proach, the theory was linked to some restrictive assumptions to show
that, under certain conditions, the increase of the waves, however small
they may be, renders a steady flow in channels with a very steep slope
unstable. The result is subject to verification of a relation linking the
velocity of steady flow to Froude's number and to a parameter of shape,
according to a coefficient of proportionality depending on the formula of
resistance adopted.

From here to the conclusion that the development of wave trains
must be attributed to the said increase of small waves is only a short
step.

With reference to this interpretation, the two Russian experimenters
Fedorov [4, 5] and Arseniscvili [6, 7] believed, on the basis of their ex-
perimental research, that the result of the theory is insufficient for pre-
dicting whether or not wave trains will develop. Hence they established
two empirical criteria which, in their opinion, will make it possible to
construct, within the domain of practical applications, channels in which
no wave trains will develop. They gave them cross-sectional areas of
flow that corresponded to appropriate values of some geometric
parameters.

In the following chapters a summary will be given of all that has been
done heretofore in connection with the subject, both in the theoretical and
experimental fields, and the results will be discussed. Subsequently it
will be shown that, contrary to the considerations of the above -mentioned
experimenters, an interpretation of the results of the theory permits the

inclusion of the experimental results in the latter.

2. INCREASE OF SMALL WAVES IN THE LIGHT OF THE
THEORETICAL RESULTS

As we know, the linear or gradually varied flow of a stream with a

free surface is governed by the two following equations:

oh . o oU? n g oU . (1)
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the first one being designated as equation of flow, and the second one as
equation of continuity.

In these equations, U is the mean flow velocity in the cross-
sectional area of the flow o for a depth &, measured at abscissa s at
a time t; @« and B are the known coefficients of equalization of the
kinetic forces and the momenta, respectively; i is the bottom slope, and
J a term that takes the resistances into account.

In equation (1) it is assumed that the (plane) cross sections do not
deviate appreciably from the vertical, while a few terms which are zero
for coefficients o and P constantly equal to unity and are normally
considered negligible because of their low value, are omitted, as usual.

A flow of this type can also be studied with the aid of two other dif-
ferential equations which, in the case of rectangular channels, can be

written as follows:

d(U+2\/§h—)=g(i—J)dtg -

d(U—2+/gh) =g (i—J)dt

These equations are valid for increments of time dt and of abscissa ds,

and are linked with each other by the relations:

a=w+vﬁwt§

ds = (U —+/gh) dt (4)

the first one corresponding to the first of equations (3), and the second
one to the second of equations (3).

In these equations, the same assumptions are made as in equations
(1) and (2) in which @ =B = 1. They can be derived either directly from
the theorem of momenta [8], from the very equations (1) and (2) by
means of matric developments connected with the properties of the
characteristic lines of the systems of equations with partial derivatives
[9], or by means of simple adding and subtracting operations on properly
transformed equations (1) and (2) [10].

The propagation of a wave in a gradually varied flow, the passage of
which does not invalidate the assumption of graduality, can either be
studied with the aid of equations (1) and (2) or with that of equations (3)
and (4).



However, if the wave has a steep front or if its characteristics are
such that, at the front, the wave loses its gradual pattern, equations (1)
and (2) or (3) and (4) can only be valid before or after the passage of the
wave. The latter’s propagation can then be studied with the aid of laws
derived by applying the overall equation of dynamic equilibrium and that
of the continuity in the portion of the flow between two cross sections
upstream and downstream from the front (fig. 5) in which the graduality
of the flow can again be checked.

As we know, these laws are expressed by two equations [11] which,

in the case of a descending positive wave, will be written as follows:

gol+olP—w,0U=gol+0U2—w, 06U (5)
Uo—Uo=w,(c—o0) (6)

In these equations, { represents the lowering of the center of
gravity of the cross-sectional area of the flow, w, the celerity of the
wave front, while the values relative to the cross section immediately
downstream from the wave front are indicated by bold type (U, o, §).

In obtaining equations (5) and (6), the resultant of the component of
the force of gravity in the direction of flow and of the resistances, which
are opposed to the other forces and, in general, small by comparison, is
disregarded.

If, with reference to either one of the above-mentioned cases, a
descending positive wave is propagated over a uniform flow it is shown,
with the aid of further assumptions (which will be examined later and
which are indispensable for obtaining the result), that this wave will in-
crease in size as it proceeds along the channel, if the velocity of the
uniform flow prevailing earlier is greater than a given limiting value.
This value depends solely on geometric parameters of the cross-
sectional area of the flow and will henceforth be designated as U,” .

This result was obtained, among others, by D. Bonvicini [12], P. Massé
[13], V. V. Vedernikov [14], all of whom refer to the case where the
movement of the flow remains linear during the passage of the wave, and
also by A. Craya [8], who is concerned with the case of an intumescence
with a steep slope but of very small height with respect to the water

depths.



The formation of wave trains is explained as follows by a few authors
such as Craya and Vedernikov: wave trains would have their origin in
very slight disturbances starting at the entrance of the channel or along
the latter. Instead of subsiding as in ordinary flow, these disturbances
would become more pronounced as they moved downstreamward.

As will be explained later in more detail, Massé, Vedernikov, and
Craya refer to a varied flow that is substituted for a uniform flow; the
first two studied the variation with time, and hence with the abscissa, of
the surface slope at the point of passage from one type of flow to the
other (wave front) (fig. 6), while Craya studied the variation in height of a
very small but steep intumescence. Bonvicini, on the other hand, refers
to a varied flow that may be regarded as the superposition of a uniform
flow and of an undulatory flow governed by a sinusoidal law and of a very
small initial amplitude. He determines the variation with s of the
waves' amplitude.

Bonvicini’s amplitude of the undulating flow, Craya’s height of the
intumescence, and Massé’s and Vedernikov’s slope at the wave front in-
crease as the wave travels downstreamward, if the velocity of the uni-
form flow exceeds a limiting value U,".

All the above-mentioned authors share the assumption that the dis-
turbance is propagated at a relative celerity equal to '\/E;:{:/Z_o, in which
I, is the surface width in the uniform flow, or that the difference be-
tween the celerity and the value X/Mis so small that it may be dis-
regarded with respect to other terms.

On the other hand, even though the procedures followed and the as-
sumptions made vary from one author to the other, the expressions of
the limiting velocities set up by them are practically the same. In fact,
the expression of the limiting velocity derived by Vedernikov for cylin-
drical channels of any shape, assuming a monomial formula of resis-
tance, comprises as particular cases either the expression derived by
Bonvicini for a rectangular cross section of finite width and assuming the
formula of resistance of Gaukler -Strickler, or the expression of Massé
and of Craya derived for a very wide cross section and assuming the
formula of resistance of Chézy with constant coefficient.

Bonvicini [12] writes the flow equation for cylindrical channels with



a rectangular cross section either in the form of equation (1) or in a
form that differs from the latter by a term containing the partial deriva-
tive of the water depth 4 with respect to the time ¢ which, as stated
before, is usually disregarded. For this reason and because the con-
sideration of this term modifies the result of the treatment but slightly,
it will be sufficient to consider the first case only. The author expresses

the term J of the resistance by means of the Gaukler -Strickler formula:
J = —Kz—% in which R 1is the hydraulic radius, as usual.

Referring to a varied flow superimposed upon a uniform flow, the
author linearizes differential equations (1) and (2) by disregarding in
their higher powers the terms containing the variations in the depth 4
and in the velocity U, because of the assumed smallness of these varia-
tions with respect to the values of the uniform flow. Referring those who
want to follow the analytical developments to the original paper, we shall
only say that the author succeeds in satisfying equations (1) and (2) with
the aid of functions U(s,t) and #k(s,?) expressed by means of series
of exponentials. The discussion of the results leads to the conclusion
that descending waves of the type assumed by the author, instead of be-
coming smaller during the flow process, became larger if the values

relative to the uniform flow, here given the subscript o, satisfy the

relation:

h 2 R 2 R
et ()]
a U 3 A o 3 h

The author considers the result inacceptable because of the ‘‘insuf-
ficiency of the basic equations.’” We shall revert to this point later in
this paper; here we shall only mention that, by writing « = = 1, equa -

tion (7) becomes, after a few simple changes:

hq

3
Uo>";—\/gho'

0

and, for very large channels:

Uo>~i—\/é713 (7')



Referring to the system of equations (1) and (2) with partial deriva-
tives, Massé [13] works out the analytical developments while availing
himself of a few properties of the characteristic lines along which the
discontinuities of the partial derivatives of the unknown functions U and
h are propagated.

With reference to very wide channels, the author considers a distur-

bance caused by the passage from a uniform to a varied flow and assumes

oh
that the disturbance started with values of the first derivatives rat

N
oh  9Q 9Q
, ——, other than zero.
ot Js ot

At the wave front, indicated by the passage from one type of flow to

the other, the depth and the velocity are always equal to 4, and U,,
Ooh 0Oh
X
of a depth, is equal to the celerity of front , which, in turn, is constant

and equal to Uy++/gh, .

respectively, and the ratio ——( ) which is, as a rule, the celerity

Hence we may write:

(ah oh

e = w, == const (8
ot | as >, ’ )

in which the subscript f indicates that the functions considered are de-
termined at the front.

With this assumption the author determines, through equations (1)

oh
and (2), the law according to which the derivative <—) varies with the
b8

abscissa, which law can be written as follows:

4,
Al‘ e B1 _ ‘41 _ B1 p U, + \/g_ho '
<ah> Us + V& fo K_ai)] U+ Vi e i
(91‘ 7 at fd3=0 ‘
in which




In the preceding relations, either the upper or the lower sign is as-
sumed in all cases.
The discussion of equation (9), taking into account equation (8), en-

ables the author to show that, in the case of a descending positive wave,

Oh
the derivative (-——) certainly increases with the abscissa, and hence
7

with the time, if:
Up>2+/8h (10)

Taking into account equation (8), since , is positive for a descend-
ing wave, it can easily be verified that relation (10) also constitutes the

condition of increase with the abscissa and with the time of the absolute

oh
value of the surface slope at the wave front ( Py ) ;
‘ 7

In conclusion we may say that the verification of equation (10) im-
plies that the wave front tends to become steeper and steeper and hence

(2)

that the wave grows larger. Craya [8] considers a positive intumes -
cence of finite height (fig. 5) that is propagated downstreamward in a
gradually varied steady flow moving along a very wide channel at a heavy

type velocity U and a depth h.

(2) Thomas [15] alsoc arrives at condition (10). Considering particularly
a flow with wave trains, he assumes that in this flow the celerities
are constant in all cross sections, i.e., that the profile of the water
surface moves downstreamward unaltered. Under this assumption,
the varied flow may again become a steady flow by means of a trans-
lation in upstream direction at a velocity equal to the celerity, the
surface of this steady flow being intersected by a series of intumes-
cences, just like that of the actual flow. Thomas believes that he can
recognize that profile in another one, derived by him theoretically
while studying the steady flow produced in a very wide channel pro-
vided with a belt conveyer moving upstreamward at a constant ve-
locity. We shall not discuss the general result, which also applies to
very steep slopes, because of the unconvincing definition of the head
given by the author for this case, but shall limit ourselves to saying
that, if the cross sections can be considered vertical, the predicted
steady-flow profile can be encountered only if condition (10) is veri-
fied in the actual flow.

10



The application of equations (3) and (4) to the gradually varied flow,
which develops after the passage of the intumescence, permits the author

to set up the following relation:

A[(U+242h) — (U + 24/gh)]

ei—p)  gl—J) ViF—X 0 —J
= _ _ - — (U h)| 6 (11)
[U+¢ﬁ vrvin VT vin @ a O vEn]e

which gives the variation of the function (U + 2\/@) at the wave front,
while the wave, which is propagated over the existing steady flow, moves
along a distance d&s at an absolute celerity o,, and at a relative ce-
lerity at the velocity U, which develops after its passage, X =, —U.

In the application of equation (11) either the values h, U, and J, or
the value of h or that of U upstream from the intumescence are as-
sumed to be known at a given instant; the other value of 2 or U at this
same instant, and that of the relative celerity X can be derived by
means of equations (5) and (6) which, as stated before, were themselves
derived from the application of the overall equation and from that of the
continuity to a short reach containing the wave front.

At this point the author takes into consideration intumescences of
such small size that the following approximations can be made:

1. The third term of equation (11) can be disregarded, either be-
cause of the smallness of 2k —X, or of that of the partial derivative
appearing in same;

2. Between the upstream and downstream values of the intumescence

the following relation applies:

U—U=2(ygh—4/gh)

derived from equations (5) and (6) and, in the way it is written, only valid,
strictly speaking, for infinitesimal waves;

3. The quantities (U—U) and (\/Eh_——\/ﬁ) are assumed to be so
small that, in the elaboration, their squares can be disregarded with
respect to values of the order of U and of Veh.

If, in particular, the flow prevailing before passage of the wave is

uniform at a depth k, and a velocity U,, equation (11) leads to the

11



following relation under the above assumptions and using the expression

of Chézy with a constant coefficient for J:

- — oh—A+/gh U
S(Veh—/gh)=—gi VEh—yeh (1— i..)a: (11')
Up (Us + 1/8 ho) 24/8 by
where in the denominator of the second member also the linear terms in
the quantity (\/g—h*—\/g_ho) have been disregarded because of their as-
sumed smallness.

Integration of equation (11') in which we shall write:

' U,
Ayt (1—- L)
U, 24/8 hy

leads to the expression:

- _ 4,
Vh—~h T oy (12)
(\/h——' \/ho)s-o
Equation (12) shows that, under the assumptions made, the water
depth & upstream from the intumescence which is propagated over a
uniform flow of a depth %, , increases with the abscissa s if
A, >0, i.e., if:
Up>2gh (10)

While the above-mentioned authors were concerned with very wide
channels, Vedernikov [14] considers a flow in a cylindrical channel with
a cross section of any shape.

He assumes that, in the equations of linear motion, the velocity U
and the abscissa § are unknown and that the cross-sectional area of the
flow ¢ and the time ¢ are independent variables. He further expresses
the partial derivatives of functions U(s,¢) and k(s ¢), which occur in
equations (1) and (2), in terms of the partial derivatives of functions
U(o,t) and s (o,t), linked to the former ones by means of easily deriv-
able relations.

The author proposes to study how the surface slope varies in time in

relation to abscissas to which there corresponds a constant depth at the

12



successive instants. To this effect he considers the inverse ES(U’ t) of

this slope, and its derivative with respect to time.

0 os
Taking into account that % s(o,t) =1 T in which [ is the surface

width, it can easily be shown that:

9 [0 da
—a}—< oh ’(U’t)):l 9o il

in which o = E—s(o', t) is the celerity of a water depth (or, which amounts
t

to the same thing, of a cross-sectional area of the flow, if the channel is
cylindrical).

Hence an examination of the sign of the derivative 0w/doc permits us
to know whether the surface slope corresponding to a water depth in-
creases or decreases with time.

The author works out equations (1) and (2) in which he assumes that

a =B =1, and expresses the term of the resistances by means of a
Ur

monomial relation of the type J = W and he establishes, without the
introduction of limiting assumptions, the following relation which links
the celerity o to the other magnitudes of the motion:

I o Uo 1 0 1 (w—U)? 1 ) 0 (o) (14

— —U(o,t)r—s(0yt) — — ———— = — — + ¢ —])— 5 (0,

g ot do (o) g o l e do )

After a few simplifications, the derivation of equation (14) leads to

the expression of dw/do sought:

12 do o 0t 0o

dw 3 o—U g [g dl 0?
do 2! a 2 (w—U)

0
U(a,t)-;s(a,t)

0? 2

9 i 7
— 5 U0 s 0T 8 6 —)) o= 1)

J 9 p mU
tEy G @D [T—Mm]
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in which M =1 —R—;i-‘, X being the wetted perimeter.
o

At this point both Vedernikov and the other authors consider the
scheme of a varied flow that replaces a previously existing uniform flow
and assumes that equations (14) and (15) also are valid at the wave front
which characterizes the passage from one type of flow to the other. At
this front all values are constant and equal to those of uniform flow and,

among other things:

S <aU B)(Oﬂ/)
== ; i :0; =0
¢ ’ ml ot da /,

J Uy? :
= —— =1
4 KZ Rozm

in which the subscript f indicates that the values refer to the wave front.

(4)

Hence equations (14) and (15) become:

)
wp=Us % |/ g - (14')
ly
0 d ([ 0s ds 7 ? m M, U
do /, dt \ 8o /, 2 aol, oo /, Uy | 2 V g, (15")
=+ gT
0

in which the positive sign belongs to descending waves, and the negative

1 o dl
sign to ascending waves. In equation (15'), N,=1— — ._0< > b
3 [0 do 0

(3) It must be remembered that, for the particular choice of the indepen-
s ‘s U .
dent variables, the position f-a—— =o means that an observer moving

t
with a constant value of the cross-sectional area ¢ (or water depth
k) encounters constant velocities U. '
(4) Vedernikov prefers to write equation (15') in a slightly different form

ds Y
and replaces ( : > in the second member by — ”_ in which
9Q . ol ; : . 4 .
a=|——] 1is the derivative of the discharge with respect to time at

ot /,
the wave front.
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being a factor that depends on the shape of the cross-sectional area of
the flow and assumes positive values for all open or closed cross sec-
tions used in practice.

If we consider particularly a descending positive wave, the profile of

Os Os

and for

which slopes in the direction of flow, the derivatives 5
(o

this wave are negative functions that approach zero when the profile tends

to become normal to the bottom. Hence if the wave tends to become

0 Os

larger with time, the derivative —
ot oh

Jw (5)

will also be positive in that case.
o

is positive, and for equation (13)

the derivative

Equation (15') shows that, for a descending positive wave, for which

ds dw
<—) is a negative quantity, as mentioned before, the derivative is
oo /, P m U, do
certainly a positive quantity at the wave front if —~ < M, V ; l.e.,

l
taking into account equation (13), the surface profile at the front tends to

become steeper and steeper if

y2 V 0o
Uy »—— m— 16
°T 2mM, I L 1)
: . U ;
or, introducing the Froude number F, =———, if
Vg a|l
2m M,
i 7, >l (16')
2

In the case of a rectangular channel it can easily be verified that,
when its expression is substituted for M, , equation (16) is transformed

into equation (7') if we write m=2/3 and p=2 (Gaukler-Strickler for-

mula) and that, in the case of a very wide channel, equation (16) is

(5) Much simpler, if we consider two cross sections 1 and 2, the first one
upstream from the second one, to which correspond two water depths
h>h, , for a descending positive wave, the distance between these
cross sections decreases with time (i.e., the profile tends to become

normal to the bottom), if the celerity of water depth 4 exceeds that
Jw Jw
of depth % , i.€., if —Bh_=l—:9— is greater than zero.
ag
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transformed into equation (10) if we write m=1/2 and p=2 (formula of
Chézy with a constant coefficient).

If we write:

Uc” = — and (17)
amdl, 1 $ 1,
U, 2 M, 1
Pt 2O (177)
uS P
equation (16) can be written:
V>1 (16'")

The dimensionless quantity V is called ‘‘Vedernikov’s number’’
by the Russian authors.
The velocity U,” determined by equation (17) depends only on the

geometric parameters of the cross-sectional area of the flow and is, in

ag
fact, proportional to the better known critical velocity U, = g——l— that

subdivides the flows into slow and fast flows. For equations (16') and
(17'), the velocity U,” would permit subdividing the uniform flows into
two categories, namely, those with a velocity U,< U,”, at which the de-
cending waves can become smaller or larger, and those with a velocity
U,> U, , at which the descending waves become definitely larger. For
these reasons, the velocity U,” is called ‘‘second critical velocity’’ by
Vedernikov,

However, taking into account that, through equation (13), we obtain

9
( 6(:7) >f = ‘%“(%)/ » Vedernikov integrates equation (15') in the unknown

function ( g:;) » and subsequently determines the time 7T to which
’
ds
there corresponds a vertical wave front imposing the condition: < ) =o.
o /f

While discounting the reservations as regards the applicability of the
above theory to the case of a very steep wave front, it must still be em-
phasized that the practical determination of time 7T is impeded by the

fact that in the expression of T there appears the value 4, assumed by

i}
the derivative (—;Q—) at zero time (see footnote (4)). This value, like
t /y
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the initial slope of the front of a very small wave, is very hard to

determine.

3. EXPERIMENTAL OBSERVATIONS

As mentioned before, the first observations concerning wave trains
were made more than fifty years ago when G. Maw [2] reported having
observed, in a torrent discharging into the Lake of Thun, in the Swiss
Alps, an undulatory motion instead of a steady flow which would have
been expected in view of the steadiness of the discharge. The facing of
the channel consisted of rubble and had a trapezoidal cross section,
4.70 m wide at the base, while the slopes varied from about 0.11 in the
upper reach to 0.08 in the lower one. At the mouth, the time intervals
between waves varied from 1/2 sec to 3 sec. In the upper reach of the
torrent the distances and time intervals between waves were less
regular.

In 1904 a committee for the study of surface waves submitted a re-
port to the British Association [16] concerning observations made on two
torrents, Guntenbach and Grunnbach (fig. 1), both discharging into the

[}

Lake of Thun. The committee proposed to give the name ‘‘roll-waves”’
to waves occurring, without any apparent reason, in channels with a very
steep slope: this term is still being used in the English literature along
with another one, ‘‘slug-flow.’’ The committee stated that the phenome -
non occurs in shallow, very rapid flows and concludes therefrom that the
formation of wave trains is impeded in the case of very rough walls since
this increases the water depths.

In the same year, P. Forchheimer [17] made some observations on.
the terminal reach of the Schmittenbach torrent in Zell, the length of the
reach being 730 m and the slope approximately 0.05. He found that the
time intervals between two successive waves varied from 4 to 20 seconds
and that the distances between them also varied greatly.

Forchheimer also reports on observations made on the Zvironjak
torrent near Cattaro. The terminal reach of this torrent, the upstream
limit of which is formed by a sill 760 m from the mouth, has slopes de-

creasing from 0.08 to 0.025 in downstream direction and a lined, trape-

zoidal cross section, 2 m wide at the base. The undulatory motion was
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first observed between 80 and 40 m from the sill, at mean depths varying
upstream from 5 to 25 cm and downstream from 10 to 50 cm; at greater
or lesser depths the phenomenon did not occur.

More complete observations (during which the discharges were also
measured) were made in 1913 by Rumelin and Angerez [18] on the spill -
way of the Rutz River plant. The concrete channel has a length of ap-
proximately 80 m and a slope i = sin a = 0.60. It is followed by a 60-m-
long reach that forms the connection with the horizontal. The cross sec-
tion is shown in fig. 7.

The experlmental observations were made for discharges of
0.5 m /sec 0.8 m /sec, and 3.4 m /sec

For the first two discharges the undulatory phenomenon was clearly
noticeable and no aeration phenomena were observed in the flow between
one intumescence and the next one. The depths varied from a few centi-
meters to between 10 and 20 cm at an intumescence; for the discharge of
0.8 m /sec the waves began to appear at between 40 and 50 m from the
inlet. For 3.4 m /sec the undulatory phenomenon occurred only in the
downstream reach and even then with poorly developed waves succeeding
each other very rapidly.

The experimental observations leading to the establishment of the
empirical criteria of Fedorov and Arseniscvili, in the course of which it
was attempted to check the validity of the criterion expressed by equation
(16), were made for the most part under the supervision of the Caucasian
Technical and Scientific Institute for Water Conservation (Zac NIIVX)
(Fedorov 1937-1938), the TNISGEI (Fedorov 1952) [4, 5], and of the
Hydrotechnical Laboratory of Gruz (NIIG and M) (Arseniscvili, 1952-1953)
[6, 7], either on channels in the laboratory or on those of hydraulic
structures.

Unfortunately the reports submitted by the authors do not give details
as regards the qualitative characteristics of the flows observed, partic-
ularly with respect to the possible presence of aeration, the manner in
which the mean velocities and the depths were measured, and the charac-
teristics of the inlets of the channels. Yet the tests are of considerable
interest inasmuch as they constitute the first systematic series of obser-

vations made, among other things, on a great variety of slopes,
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cross-sectional shapes, and 1ehgths.

The results of the observations made by Fedorov are listed in
columns 1, 3, 5, 6, and 7 of table I, for channels 1 to 22. In this table
are shown: in column 1, the water depths #,, measured in cross sec-
tions upstream from the zone where undulatory flow occurred and where,
at least according to the author, conditions of uniform flow had been at-
tained; in column 3, the mean velocities U;; in column 5, the heights of
the waves, if any; in column 6, the ratio V between U, and thle velocity
U' determined from equation (17), and in column 7, the ratios AR,
between the measured depths 4, and the corresponding hydraulic radii
Ry . The discharges 0, the Strickler coefficients K, and the ratios
ho/xo» which are not included in Fedorov's data, were computed from
the preceding values and listed in columns 2, 4, and 8 of table I.

In summary, an examination of the 41 flows in 22 different channels
shows that wave trains were found to occur in 17 of them and steady flow
in the 24 other ones.

On the other hand, the ratio expressed by equation (17') (column 6)
appeared to be greater than unity in 34 cases, particularly in all 17 cases
where the presence of undulatory flow was found to occur, and in 17 other
cases where the flow remained steady in the tests. Thus for 24 cases of
steady flow the ratio U, /U, was greater than unity in 17 cases and less
than unity in the other 7.

Fedorov also gives the results of studies of velocity profiles in chan-
nels with very steep slopes made, in the case of roll-waves, upstream
from the zone where the latter occur. Figure 8 shows the results of
studies made in seven cross sections, of which those numbered I, III, IV,
and V correspond to the channels in table I numbered 2, 12, 11, and 9,
respectively. In cases I, II, and IIl a varied flow with roll-waves was en-
countered, and in the other ones a steady flow. Fedorov examines the
curves of equal velocity and arrives at the conclusion that the undulatory
motion is likely to appear when, in a preexisting uniform (or steady) flow,
all velocities present longitudinal sections consisting of very elongated
curves if plotted by means of vertical planes, and of very flat curves if
plotted by means of planes parallel to the bottom, which amounts to saying

that, in the central portion of the flow, the curves of equal velocity consist
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of slightly curving lines, closely drawn together.

The tests made by Arseniscvili, who also measured the mean values
of the flow upstream from the zone where roll-waves could occur, are
unfortunately described with less detail than those of Fedorov.

He made observations on six channels with lengths varying from 78 m
to 1113 m and slopes from 0.025 to 0.58. In total, 17 tests were made
with discharges ranging from 0.02 m3/sec to 16.5 m3/sec. He also con-
ducted tests on a 30-m-long channel in the laboratory with a slope of 0.15
and with rectangular, trapezoidal, circular, and triangular cross sections
(fig. 9).

In all tests mentioned (34 in total), the ratio between the velocity U, ,
upstream from the zone where an undulatory motion could occur, and the
velocity U{, was greater than unity; however, in twenty-four cases no
wave trains appeared, which shows how careful one has to be when trying
to predict the formation of wave trains solely on the basis of the evalua -
tion of the ratio U,/U;.

For this reason both authors concluded that the result of the theory is
unsuitable for predicting the formation of roll-waves, which led each
author to establish, independently, a criterion of an empirical character
that would replace the one expressed by equation (16). Fedorov considers
the ratio #4y/R, between depth k, and hydraulic radius R, in the uni-
form flow that would develop in a channel in the absence of wave trains
(column 7 in table I). He notes that for bottom slopes in excess of 0.02 to
0.025, the ratio /7R, normally assumes values of between 1.1 and 1.2
and less frequently between 1.3 and 1.4 in flows developing wave trains.

He therefore thinks that for:

ho/Ry >1.4 (18)

roll-waves will no longer occur; for values of this ratio less than 1.4, the
free surface could either be intersected by roll-waves or be free of
irregularities.

On the other hand, Arseniscvili [6, 7] contends, in the light of his ex-
periments, that no wave trains will occur when, for slopes between 0.02

and 0.30, the following relation applies:
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hy

Xo
in which 4, and g, are the water depth and the wetted perimeter in

(6)

>0.10 (19)

uniform flow.

In the light of equations (18) and (19), both Fedorov and Arseniscvili
recommend adopting, for channels with a very steep slope, triangular,
circular, or even trapezoidal and rectangular cross sections, but with a
small base so that parameters AR, or hyfy, are large enough, even for
small discharges. Where considerable fluctuations of the discharge are
anticipated, cross sections of a mixed design like those proposed by
Fedorov may be adopted (fig. 10).

To complete the review of the results obtained from the experimental
observations we shall mention the tests upon the chute leading to the
stilling basin of the Sangre Plant No. 3 of the Comunione Impianti Sangro,
SME -Terni. The tests, whose results had heretofore not been published,
were made in 1952 with the approval of Engineer Alfredo Giancotti.(7)

The characteristics of the Sangre Plant No. 3 have been described in
detail in L’Energia Elettrica, Volume XXVIII, No. 8, 1951,

We shall only mention that the chute, which is fed by a long shalft,
consists of four reaches, the first one having a length of 200 m and a
slope of 0.045, the second one a length of 200 m and a slope of 0.24, the
third one a length of 900 m and a slope of 0.21, and the fourth one a length
of 160 m and a slope of 0.27. They are followed by a reach with a rela-
tively mild slope, 0.024, and a dissipator, the total length being approxi-
mately 100 m. The cross sections of the channels are represented in
figs. 1la and b: the first one corresponds to the first two reaches, and -

the second one to the other two.

(6) Unfortunately the data contained in Arseniscvili’s paper are incom-
plete; however, we may say that the fact that, to satisfy the validity
of his rule, the author sets the value 0.30 as the upper limit of the
slope, leads one to believe that in some of the tests he undoubtedly
made with values higher than 0.30, the limit of 0.10 for &)y was not
found to be valid.

(7) I take this opportunity to thank the Directors of CIS for permitting
me to publish the results.
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The observations were made for discharges of 5.6, 9.2, 12.9, and
16 rn3/sec. The inflow upstream, which could not be measured directly,
was evaluated as the difference between the discharges flowing toward
the stilling basin of the plant and those diverted toward the turbines; both of
these discharges were measured with instruments of sufficient accuracy
for the purpose of the tests.

At the three lower discharges the characteristic undulatory motion
was found to occur, particularly in the downstream reaches of the chute,
with billowy motions at the dissipator that produced jets attaining a height
of 5to 6 m (figs. 3 and 4). At the time of the passage of the wave crests,
the water in the center reach of the chute attained depths of between 0.9
and 1 m. At discharges higher than 13 m3/sec the undulatory motion had
a tendency to subside: at 16 m3/sec the latter was replaced by steady
flow.

All experimental results mentioned here are listed in table I, together
with the data relative to the experimental channel used at Naples for the
study of rapid flows and to a few data of the Russian chute of Gizeldon and
of reaches discussed in M. Viparelli's paper [1].

The criteria followed in the evaluation of the values not measured
directly vary from one case to the other.

For the spillway channel of the third hydroelectric plant in the Sangro
River, consisting of several reaches, only the 900-m-long center reach,
the principal portion of the chute, has been taken into account. Given the
uncertainty of the value to be attributed to coefficient K of the Gaukler -
Strickler formula, assumed for computing the depths #4,, the table shows
the values of %, and U,, derived for values of K equal to 60 and 90,
In order to be able to compare the data with those of the Russian re-
searches, aeration phenomena were not taken into account.

The same procedure was followed for the chute of the hydroelectric
plant in the Rutz River, whose agitated inflow produced a considerable
asymmetry in the flow according to Rumelin. On the other hand, it should
be taken into account that the flow was accelerated in a fairly long reach
of the channel.

The mean velocities U, and the depths /4, relative to the Gizeldon

chute and to the experimental channel of Naples are, on the contrary,
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determined from the knowledge of the velocities at given points: ac-
cording to the scheme adopted by Viparelli the values are obtained by as-
suming for k&, the height of the point to which corresponds the maximum
value of a Pitot-tube reading. Consequently, the discharge actually
passing through the cross section under consideration, shown in column
2, is greater than the product U, -4,/ of a quantity equal to the dis-
charge corresponding to the upper layer of the flow consisting chiefly of
drops of water moving in air. Column 4 shows the values of Strickler’s
coefficient K; they were derived from the mean velocities and the
depths when this information was furnished by the experimenters. In
cases where only the discharge and the channel characteristics were
known, these values were taken from the determination of %, and U,.
For all tests taken into consideration, the ratios U,/U% ho/Ry and  hyfy,

were computed and shown in columns 6, 7, and 8, respectively.

4, SOME OBSERVATIONS CONCERNING THE EXPERIMENTAL
RESULTS AND THE APPLICATIONS OF EMPIRICAL CRITERIA

The experimental results listed in table I are open for a few con-
siderations, either with respect to the qualitative behavior of the phenom-
enon, or to the reliability and accuracy of the criteria proposed by the
Russian authors.

First of all we note that the tests confirm the findings of the first re-
searchers, namely, that as the discharges in a channel increase, the un-
dulatory phenomenon tends to disappear and is replaced by steady flow.(8)

The Russian experimenters are not concerned with aeration phe-
nomena of the flow; however, it is conceivable that an appreciable amount
of aeration had to develop in many of the flows observed because of the
great steepness of the channels. It may therefore be quite possible that

in such cases the actual depths of the flows, i.e., the depths of the layer

of water and air bubbles which, in a rapid flow, is surmounted by detached

(8) The observations on the Zvironjak torrent constitute the only case
where no wave trains were encountered for the minimum discharges;
this must probably be attributed to the considerable irregularity of
the bottom which, in the case of small depths, broke up all small
waves the moment they were formed.
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water drops moving in air, are less than those measured. The ratios AR,
and /hy/y, , reported by the authors, would then be higher than those
actually corresponding to the flow.

However, the results obtained from channels 23 through 30 confirm
the statements made by Fedorov and Arseniscvili, namely, that it is im-
possible to predict, on the basis of the evaluation of the ratio U,U! ,
whether or not wave trains will develop. In 26 flows examined by fhern
the ratio Uy /U, was much higher than unity, yet in many of these flows
(20, to be exact), no wave trains were found to occur.

Insofar as the empirical criteria are concerned, an examination of the
results furnished by Fedorov (channels 1 through 22), which served as a
basis for his criterion, reveals that most flows with wave trains are
characterized by #4/R, ratios ranging from 1.1 to 1.2 and that the table
never shows an undulatory motion in flows for which #y /R, >1.4.

However, we note that among the flows studied by Fedorov there are
many that do not show an undulatory motion, even though #AJR,<< 1.2. And
if we examine the results obtained from channels 15 and 20 (Gizeldon),
the first one with a slope 7 =0.044 and the second one with i=sin a=0.552,
we find that the flows are free of wave trains, even though k/R <1.1.

A check of the criterion of Arseniscvili, made by comparing it with
the experimental data of Fedorov, shows that, within the range of the ratio
ho/4, between 0.04 and 0.08, there are numerous cases of either steady
flow or flow with wave trains, while for Ay, > 0.08 Fedorov’'s tests do
not reveal any roll-waves. However, a comparison with the results of the
second part of the table reveals that there may be cases of flows with
wave trains for values of %[y higher than 0.10, up to a value of 0.16 and
inversely, cases of flows without wave trains for values of A4y less than
0.10 down to a minimum value of 0.01 (Gizeldon).

The indistinct correspondence between the type of flow observed and
the values of the assumed parameters is not surprising, since ratios be-
tween geometrical values of a cross-sectional area of the flow, like those
taken into consideration here, are unable to characterize a flow; among
other things, the disappearance of the undulatory phenomenon in question
for slopes less than 0.02 to 0.025 leads us to believe that the slopes, and

hence the velocities, must exercise their influence.
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On the other hand, we know that the wave trains always appear at
some distance from the point of inflow. Fedorov clearly indicates that in
channels where an increase in the discharge caused the wave trains to
disappear, this disappearance was at first limited to the initial reach of
the channel; when the discharge increased further, reaches of greater
and greater length became also involved. It is therefore possible that the
length of the chute plays a decisive part in the appearance of wave trains,
i.e., a short spillway will frequently allow the flow to proceed in a prac-
tically steady manner, because the waves do not have the time to in-
crease to the point where they become noticeable.

Because, on the other hand, the theory shows the effect upon the in-
crease of the wave of either the bottom slope or of the abscissa s,
measured from the point of appearance of very small waves, which point
may be considered as practically coinciding with the channel's entrance,
it appears to be expedient to revert to the theoretical treatment, in order
to make a more detailed examination of the significance of the assump-

tions made and of the results obtained therefrom.

5. SIGNIFICANCE OF THE THEORETICAL RESULTS

As we have mentioned before, the theories passed in review lead to
expressions of limiting velocities that may be considered equal to each
other except for some small differences caused by the different types of
formulas adopted in the various developments to express the resistances.
However, this equivalence does not always permit us to conclude that the
result acquires general validity, beyond the limits established with the
assumptions made each time. While the expressions of the limiting ve-
locity are practically the same, this cannot be said of the latter’s signif-
icance. First of all, the term ‘‘increase in the wave'’ (esaltazione dell’
onda) is used by Bonvicini and Craya to indicate an increase in its height,
but by Massé and Vedernikov to designate an increase in the steepness of
the wave front. Besides, according to the results of Bonvicini and Cravya,
the descending waves decrease or increase according as the velocity [,
is higher or lower than U{, while the results of Masse and Vedernikov
do not exclude the possibility that, for U, < U’, the descending waves will

increase.
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However, it must be pointed out that the assumptions made by the
said authors limit the results to waves that are either very low or have a
very slight frontal surface slope with respect to the bottom. This is the
significance of the linearization procedure followed by Bonvicini in his
developments, in which he disregards terms containing the squares of the
variations of 2 and U, and of the procedure resorted to by Craya, who
likewise disregards the linear terms depending on the variations of #
and U; finally, this is the significance of the assumption of Massé and of
Vedernikov that the flow may be considered gradually varied at the front,
which assumption would certainly be inadmissible if the front would be
considered fairly steep with respect to the bottom.

Particularly insofar as the result of the elaboration of the linearized
equations according to the Bonvicini procedure is concerned, we bring to
mind the observations made by Supino [19]. After pointing out that the
process of linearization of equations (1) and (2) followed by Bonvicini in-
volves, for velocities lower than those satisfying equation (7), a decrease
in the waves less than that which would result from the elaboration of the
nonlinearized equations, he shows that if the velocities do satisfy equa-
tion (7), the result of such a procedure does not fit properly, as a solution
of the first approximation, in a similar solution of the nonlinearized
equations. He therefore has some doubts as to the validity of the result
obtained from equation (7) and concludes that such a result 'can, at the
most, mean that, at the verification of equation (7), small waves increase
in the first reach of their course, provided the assumptions of smallness
of the variations of & and U, which form the basis of the linearization
process, are still acceptable with a good approximation. The error re-
sulting from the linearization increases as the increasing waves become
higher and higher: under those conditions the linearized equations are no
longer sufficient to express the phenomenon, and the actual development
of the conditions can only be ascertained by direct observation.

In a series of tests made by Cocchi [20] for the purpose of checking
the result of Bonvicini, the former actually found that sinusoidal waves
with an amplitude of 6 and 10 mm, generated at the entrance of a labora-
tory channel upon uniform flows with depths 4, of 3 or 4 cm, decreased

in downstream direction, despite the fact that the velocities, which varied
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with the different slopes adopted, satisfied the inequality (7).

On the other hand, it appears that no such tests were made to check
the results obtained by Craya, Massé, or Vedernikov. Therefore, re-
verting to the preceding considerations, it must be noted that if, because
of the peculiarities arising from the theory, the size of very small waves
in a flow has become such as to invalidate this theory, there is no reason
why these waves should not continue to increase for a certain period of
time. In that case the parameters that regulate the increase of very
small waves would retain their significance for the appearance of waves
of a certain size. It has therefore been considered using the above-
mentioned experimental results for checking whether the appearance of
wave trains, intumescences with a steep front and finite heights, is
governed by the same parameters that govern the phenomenon as sche-
matized by the established theories.

Limiting the considerations that follow to the case of descending

waves, we note that equation (15') can be written in the following form:

d ( Os 4 ds - (15")
dt 60’);_ (60)/+
in which
M
gu 22 zets o)
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Integration of equation (15'") yields:
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or, because at the front of the wave we have
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In equation (20), of which equation (9) (Massé) is a special case, con-

4 (___as B
A
)t

sidering equation (8), the second member is substantially the same as the

inverse of the second member of equation (12) (Cravya).
Hence if in equation (20) the first member is given a constant value

¢, considering the definition of 4, we obtain after a few simple changes:

1—7 p g1

ne= —m . —_.

1 2 Uy

F,

-5 (21)

0

V' being the number determined from equation (17').

i
Equation (21) can be represented in the plane of coordinates —]2)— 52
0

s’
V by a series of curves for every cross-sectional shape.
Figure 12 shows, by way of example, the function expressed by equa-
2 -4 6
, 10

tion (21) for values of ¢ of 10~ , 107", The curves are plotted on
the basis of the Gaukler -Strickler formula, i.e., with m = 2/3 and p = 2.
In the expression of V, M, was set equal to 1 in one case and to 0.3 in
the other, for each value of ¢. These values amply covered the vari-
ability range of M for cross sections used in practice.(g)
We note that, for the same value of ¢, the curves run fairly close to
each other, so that the effect of M upon their course may be considered
negligible. This effect depends on the shape of the cross section and,
with the presence of Froude's number in the denominator of equation (21),

appears implicitly in the latter.

(9) We obtain, for example:

M = 1.0 for a very wide rectangular cross section,
M = 0.5 for a rectangular cross section with h/l = 0.5,
M = 0.5 for a triangular cross section with an angle of 90°,
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Insofar as the significance of the equation

Js
(2
do /,

4]

is concerned, we may note that if the function

(8&) l(ﬁs’)
as /), I \an),

is designated as y, equation (21') becomes:

= ¢ = const (21')

Ay + B
A Yo+ B

=& (21!!)
or
Ay+B=¢"Ay,,+Be

and, disregarding B ¢ with respect to the other terms,

y B
= £

Va0 A Yymo

(21')

Equation (21) is namely equivalent to the condition that the ratio be-

tween the inverses of the surface slopes with respect to the bottom
Os Os
)./ ).

be equal to ¢ minus a quantity —Z%—O— , positive for V >1, which,
because y,, is very large indeed in absolute value, can be disregarded
with respect to ¢, so long as 4 is not very small, i.e., so long as V
is not very close to unity.

If we refer here to the absolute values of the surface slopes instead
of to their inverses, we may say that equation (21) permits determining,
within the approximations used, the abscissa s to which corresponds an
increase in the absolute value of the surface slope at the front equal to

1/e. The curves are plotted in fig. 12 for various values of ¢ and permit
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computing the value of the abscissa to which corresponds a predetermined
increase in a very small initial wave.

And the result wouldn’t change much if, rather than assuming that the
two members of equation (20) are equal to a constant &, we assume that
the two members of equation (12), set up by Craya, are equal to 1/e. The
curve which, in the plane %i—;s, Frl2, corresponds to such a position,
does not differ much from the curve which, for the same ¢, was plotted
for very wide channels in fig. 12, and the slight differences depend on the
fact that Craya assumed the coefficient of Chezy’s formula to be constant.
Insofar as the physical significance is concerned, such a position amounts
to saying that, at the abscissa s, the difference \/—h——\/a between the
quuare roots of the water depths upstream and downstream from the in-
tumescence with a steep front has become 1/¢ times the similar differ-
ence belonging to the very small wave considered.

That being stated, the values computed from the experimental results

discussed previously, which are also listed in table II, are plotted in the
Li
Cartesian graph of coordinates gﬁ , V. of fig. 13, in which L is the
0

length of the channel. After writing s= L, the coordinates of fig. 13 ob-
viously correspond to those of fig. 12. To facilitate the discussion that
follows, the groups of points relative to a few channels that are of par-
ticular significance are marked: in fig. 13, with the numbers used in
table I.

The graph clearly shows the effect of the two parameters mentioned
upon the formation of wave trains in the sense that, for IV > 1, the

latters’ development is facilitated both by the increase in ¥ and by the
Li
U2’

increase in g

The graph also shows one of the curves of fig. 12, namely, the one
relative to ¢ = 10—4 and to a very wide channel. To the left of this
curve, only points corresponding to flows without wave trains are main-
tained, while those of channel No. 12 are left out. To the right of this
curve and close to it, either cases of flows with roll-waves or cases of
practically steady flow are noted; at greater distances, only flows with

roll-waves.
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Table II

No. of Channel | | _ Us g ki No. of Channel | |, _ G g_LL“

and Test v, U,z and Test U/ Uy

1 1 10.20 8.88 20 1 1.05 14.83

2 9.75 2.78 2 0.91 9.37

P 1 4.84 2.79 21 1 0.86 0.98

2 4.67 1.81 2 0.75 0.62

3 1 4.89 36.37 22 1 1.62 3.52

2 4.87 22.47 2 1.16 2.34

4 1 4,13 11.61 1 3.3 17.25

2 4.28 4,54 23 2 3.2 12.31

! 1 4.06 | 10.95 . g .
2 3.80 6.73 : :

1 2.28 26.70 1 4.95 10.44

6 > 2 30 9.61 23 2 4.9 7.12

' : 23 3 4.75 5.77

7 1 3.15 17.95 4 4.51 5.24

2 2.68 9.05 1 5 4 17.31

1 1.87 28.63 24 2 5.5 11.77

8 2 2.06 11.62 3 5.7 4.03

4 L4 8,26 o 1 7.75 | 10.76

9 1 1.45 18.99 24 2 8.10 7.31

2 1.43 11.38 3 8.60 2.36

10 1 0.86 25.36 1 10.62 1.26

2 9.63 0.94

11 1 0.68 21.09 25 3 9.73 0.86

12 1 1.91 4.78 4 9.67 0.83

: b il 1 6.08 1.28

13 1 0.83 31.50 26 2 6.19 0.93

2 0.78 20.64 3 6.44 0.74

14 1 1.25 242.22 1 4.66 1.78

2 1.29 64.06 27 2 4.99 1.23

15 1 1.54 | 24.91 3 Gamiks g

1 5.74 1.28

16 1 1.33 10.04 28 > 6.43 0.79

17 1 2.06 10.10 3 5.61 0.76

. o ik 1 8.66 1.89

18 1 1.97 14.29 29 2 8.50 1.48

2 1.45 7.36 3 8.08 1.23

19 1 1.61 19.99 1 11.0 2.53

2 1.38 13.29 30 2 10.1 2.30

3 10.48 1.66
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Insofar as the points relative to channel 12 are concerned, it must,
above all, be pointed out that the inflow of this channel could not have
been regular, as indicated by the asymmetry of the free surface shown in
fig. 8, where case IIl represents a velocity profile taken in channel 12
for a discharge of 0.27 rn3/sec.

Moreover, it must be noted that, according to the interpretation given,
the fact that a flow is represented by a point to the left of the curve
plotted does not mean that no waves can develop in this flow, but rather
that the increase of very small waves did not reach a significant value.
While the waves in channel 12 could have had heights of 1 or 2 cm for a
mean flow depth of between 10 and 15 cm, and while the inflow could not
have been regular, as mentioned before, it appears to be permissible to
eliminate the two points from those relative to flows with wave trains.

With respect to the points relative to the test channel of Naples with
a slope of 45°, it must be noted that it was not certain whether the condi-
tions of uniform flow had been attained, even though the values of V and

Li
U,
probably do not differ much from the values for uniform flow. However,

» computed on the basis of those measured at the toe of the channel,

the fact that the flow accelerates in a fairly long section of the length L
causes the present case to differ considerably from the scheme assumed
heretofore, in which the flow is expected to be uniform from the very

(10)

beginning. This observation applies in general to all very short chan-
nels considered where the length of the reach directly downstream from
the inlet, in which the flow accelerates, constitutes a fairly long portion
of the channel’'s total length.

Finally, the presence of flows without wave trains to the right of the
curve of fig. 13 is yet to be correlated with the negative effect the aera-

tion of the flow probably has on the increase of the waves, or at least on

their noticeable appearance at the surface.

(10) It must also be remembered that, strictly speaking, equation (1)
would have to be changed for a few channels such as Nos. 1, 24, 25,
and 30, in order to take into account the very steep slopes.
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The graph of fig. 13 therefore confirms the importance of the ratio
V = Uy/U;: the absence of wave trains in a few flows for which V >1 is
explained by the shortness of the channel. Moreover, the graph shows
that, for the same V and L, the presence of noticeable wave trains de-

pends on the value of the ratio i/Ug?; if the Gaukler -Strickler formula is
used, this ratio is equal to KRR Hence for the same V, the increase

in depth impedes the formation of wave trains.

An observation of greater significance appears to be the fact that, as
the discharge increases, the ratio V= U,/U,” does not as a rule vary
appreciably, while the values of 1/U2? may decrease to the extent that
they cause the displacement of the point representative of the flow from
one of the parts into which the graph has been subdivided to the other
one, and precisely from the part corresponding to wave trains to that
corresponding to steady flow.

The curves plotted for channels 1, 3, 4, 5, 6, 7, 8, 23, and 24 illus-
trate the above. The disappearance of the phenomenon as the discharge
increases is caused, rather than by a decrease of V (which decrease is
not always encountered when the discharge (Q increases), by a reduction
in 1/Us# resulting from the increase in the velocity, i.e., when the dis-
charge increases, provided U,/U! > 1, the decrease of 1/U? may be
such that the length of the chute becomes insufficient for an appreciable
increase of the waves.

The graph of fig. 13 gives rise to a few observations as regards the
effect the cross-sectional shape may have. If, for the same discharge
and slope, we pass from a cross section with a wide base to a narrower
one, this nearly always corresponds to an increase in the velocities of
uniform flow, at least for small water depths. This would confirm the
findings arrived at empirically by the Russian experimenters, namely,
that it would be expedient to use cross sections with a narrow base, such
as circular, triangular, or even trapezoidal cross sections.

By way of example, fig. 14 illustrates the curves that give the varia-
tions of ¥V with respect to g—(l]% at varying discharges for three chan-
0

nels with the same slope ¢ = sin @ = 0.25 and the same length L = 150 m,
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but cross sections that are rectangular, circular, and triangular, respec-
tively. The coordinates of the points marked by circles were computed
with the aid of the Gaukler -Strickler formula for three different dis-
charges and for K values of 60 and 80. At the same roughness, the posi-
tion of the curves shows the distinct advantage derived from the use of
narrow and high cross sections and hence from the improvement resulting
from circular or ovoidal cross sections for eliminating or reducing wave
trains, according to the interpretation given.

The effect of the roughness has not been verified. With regard to the
chute of the Rutz River plant and to that of the third plant in the Sangro
River it was considered expedient to make the checks for two K wvalues
of Strickler because of the uncertainty of the value of the roughness. The
graph of fig. 13 shows that, in both cases, the position of curves 23 and
23b, 24 and 24b with respect to the separating curve corresponding to
& = lO-4 plotted in that graph, does not vary appreciably when K varies
from 60 to 90. This is found to apply also to the cross sections of fig. 14,

When the roughness decreases while the discharge remains the same,
the resulting reduction in depth causes an increase either in the ratio
V = U,/U, or in the velocity U, , and these increases have an adverse ef-
fect upon the formation of wave trains since, as mentioned before, the
former facilitates the increase of the waves, while the latter reduces the
increase in the reach between the inlet and the end of the channel.

On the other hand, the effect of the roughness may be considerable
for values of V' close to unity. In that case, to be sure, the reduction or
increase of the roughness may cause V to change from values less than
unity to more than unity, and vice versa. And because wave trains have
never been known to occur for V< 1, this change may cause the appear-

ance of wave trains in one case, and their disappearance in the other.

6. CONCLUSIONS

The elaboration of the theoretical and experimental results has em-
phasized the significance which the number V = Uy/U! (in which U, is

the mean velocity of the uniform flow and U! is defined by equation (17))

Li

g U02

and the number (in which L and i are the length and the slope of
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the channel) have for the presence of wave trains in channels with very
steep slopes.

Even though a large portion of the group of experimental results
taken into consideration is derived from observations made in channels
of industrial or agricultural structures and is therefore subjected to the

uncertainties connected with that type of observations, the study of the

' Li
numerous results made it possible to plot, in the plane V = U,/U.", TR
0

a curve which, to its left, limits the zone of flows where no wave trains
were found to occur. Since the parameters defined above are the same
ones that, according to the theory, regulate the increase of very small
waves, this seems to confirm the fact that in flows for which V=U,/U,/>1,
wave trains are formed by the increase of very small waves which, for
various reasons, always develop in such flows. The existence of practi-
cally steady flows for V = U,/U,” >1 is interpreted as being caused by
the circumstance that, for the values of slope i and velocity U, be-
longing to them, the length L of the channel is insufficient to make the
increase of small waves noticeable.

In the design of channels with very steep slopes, in which the forma -
tion of wave trains is to be prevented, the adoption of cross sections in

which the water depths are fairly large with respect to the widths, even

for small discharges, facilitates the use of graph U,/U;, of fig. 13

1
g Uz
in the safety zone.
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List and Meaning of Principal
Symbols Used

depth of flow

mean velocity

respectively cross-sectional area of the flow, surface width,

and wetted perimeter
hydraulic radius
abscissa, measured along bottom line, and time

bottom slope

resistant force per unit weight of flow, usually expressed by a

ur

relation of the type J=
K2 R2m

characteristic constants of the above expression of jJ
celerity of a water depth

celerity of wave front

dy,
parameter defined by M= l—RT
g
1 o 4l
parameter defined by N=1l—— — —
3 l do

The subscript zero is affixed to symbols referring to conditions
form flow. ‘

Naples, May 1960.
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Fig. 5. Schematic represen-
tation of intumescence with a
steep front
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Fig. 8. Velocity profiles in
channels with a very steep
slope (by Fedorov [5])
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