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HYDRODYNAMICS

NDITIONS AT THE FRONT OF A TRANSLATION WAVE DISTURBING
A STEADY MOTION OF A REAL FLUID

By V. V. WEDERNIKOW

{Communicated by V. L. Pcsdunine, Member of the Academy, 31, X. 1944)

~ Let us comsider the motion of a continuous wave. The equations of &
radually varying unsteady motion of a real fluid in open channels are of the

ollowing form (*): .
the continuity equation is

4Q | 6F - :
and the dynamics equation is
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Making use of the continuity equation, we can rewrite the dynamic equa- -

ibn as follows (*):
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In the sequel a formula of ihe Manning type €= R?/n* will be used  for
1 coefficient € * and we shall adopt the notations ’1—@;* %g—g = N
‘ 1uR$é,=_ 14—2%1/ 1--m* =M, supposing, in order to simplify the

aleulation, that the .channels have a prismatic form.

By introducing a function whose meaning is determined by the continuity
quation, theequation (3) can bereduced to a partial differential equation of
& second order, which is not linear in the general case. The trajectory of the
‘ont of translation wave disturbing a steady flow is a eharacteristic ("}, Along
1e characteristic the partial derivative cannot in general be computed, It is
nown, however, that il the condition establishing a relation between the
dependent varjables and the first derivatives, with respect to these variab-
es, of the function sought-for (in the present case, between s, ¢, difds, F, Q, .
Flds, dQ/ds) is fulfilled, then one of the partial derivatives remains arbit-
ary, and it is possible to compute the derivatives along the characteristic.

* The results will not be affected essentially, if another type of formula instead of the Man-
ng type is used, or, in general, if the term U %/ C*R is replaced by a different form of resistance.
W, bringing on different relations {for ingtance, that of Bazin) or a differcnt power of U in the
quations (2) and (3). :
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Let us show that this condition is fulfilled at the frontof.a wave distarb-
ing a steady flow. A convenient way of computing the derivatives will also
be indicated, and the formulae will be derived for computing the deriva-
tives of the first and second order in equation (3) for any distance of fthe

front from the initial section. .
In the initial section (s=10) either the hydrograph Q= @, (¢} or the water-

cauge graph H=H; (¢) is known, I. e. F=F; (. _
The fundamental condition at the wave-front, from. which follow all the
other conditions and which fakes place in virtue of ‘the fact that the . initial

motion is a steady one (the discharge is a constant all along the flow), is
-as- follows: . :

Q= Q= const; dQJdt=0; &*Qfdt*=0, ‘etc. @

The relation between s and £ is established through the introduction of
the propagation velocity W.of a point. of the wave-front along the free

curface of the steady flow. Then

§= t% Wdt : © By
. A

and from (&) and (1) we have’
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cte. The velocity of propagation of the wave-front eoincides with the velooiby o

of constant discharge. _
Let us find the relation between dFf/di and s; and from it establish th

relation between F,U=Q/F,s, 1 and ds/dt=W. The velocity of the propa
gation of the wave-front is defined by a well-known formula *

W=U+ ‘/% 8

In the case of a uniform motion (dF/dt=10) the velocity of the front
coincides also with the velocity w of propagation of constant area F {or constan
depth H), ' , ‘

Tor a steady gradually varying pon-uniform flow in prismatic channe
the relation hetween s and F, or between s and U is defined by the equatio

of Belanger (%)

aF_er (U N[ (gp 0T
ds e \ C*R L ab

The velocity W can therefore be computed for any position of the fron
Accordingly, the relations between §, ¢ and ds/di and also between F and
ave known, too (the latter relation for B=0 can be computed from the tabl
given in (). . ,

‘For the general case of non-uniform motion we have:

dF _OF ar
W+

dr - ds

240



GF o rdr GFN | 8Q 1oy FAF OF\ :
5=W (=LY R (¥ ) (11)

_ r
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or the derivative which remaing arbitrary we, respectively, choose dF[ds =,
9s* =18, ete. These derivatives characterize the shape of the free surface
inclination to the bed, its curvature, ete.). Construct the differential
tion for the derivative 8F7/ds=r. We shall have

dr _#°F . | &F
T W ma (12)
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‘Let vs differentiate both sides of equation (3} with respect to §. Making
e of the continuity equation (1) we get:
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means of (8), (9), (11) and (12) we obtain for r an ordinary differential
uation of the first order in the general form '
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re and henceforth
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From équa’tion (16) r ean be computed for any position of the front,
ce the value of r; at point (s=0,£=0) is determined, according to the
ondition (11), by the formula - ‘

OFN _ /dF 1 70Q ' &
=)= G ) (30, as)

- We proceed to construct the differential equation for the derivatives 8°F/ds® = §,
¥o shall have ' :

a8 Ar s
a7 W gmar (19)

;:éking the total derivative of 3°F/dsd? with respect to time ¢ and making
se of (19), we find
: #BrE - dip
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ar
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Taking the third total derivative of ¥ with respect to 7, we can find the
xpression of 9°F[9t* through 9°F9s® similar to (13), and from the condition
bat d*Q(de* =0 we can express §°Q[01® through 8*°F|ds® as in (14).
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one of the third derivatives vemains arbitrary. When the value of the -
one of the third;d crivatives at the wave-front is given, the other two can be obtain
ed by computation. Let #*F|as* be the arbitrary derivative. Differentiating .
both sides of equation (15) with respect to s and making use of conditions (19)
and (20), we shall obtain the ordinary differential equation of the first order
for the derivative 3, which it was our object to find and which after sub
stituting 92F[ds =38 (conditions (12) and (13)) for 8°F|9t* and 0°F|ds dt, and,
gFjs =71 (condition (11)) for 9Q/ot and aFjat, will take the general form

a3 =[3f, (1) + . () ¢ 24y
fore the functions f, (£) and f,{f) invoive W, U, F and r=0F|ds which, asis:

obvious from the foregoing, can be represented as functions of s or I,
For the case where the uniform flow is disturbed by the wave, we gel
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Thus,
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The investigation of the expressions (15) and (22) will be reported

elsewhere, -
Equations to compute derivatives of bigher orders can be obtained in &
‘similar manner. .
Section for Hydraulic Engineering Problems. . : Received
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